COMPARISON OF PAYOFF
DISTRIBUTIONS IN TERMS
OF RETURN AND RISK



PRELIMINARIES

e \We treat, for convenience, money as a continuous
variable when dealing with monetary outcomes.

e Strictly speaking, the derivation of the expected utility
representation assumed a finite number of outcomes;
however, the framework can be extended, with some
minor complications, to the case of an infinite domain.

® Suppose that we denote amounts of money by the
continuous variable x.

® We can describe a monetary lottery by means of a
cumulative distribution function F' : R — [0, 1]. That is,
for any x, F'(z) is the probability that the realized payoff
is less than or equal to x.
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PRELIMINARIES (CONT.)

® Note that if the distribution function of a lottery has a
density function f(-) associated with it, then
F(z) = [*__ f(t)dt for all x.

® The advantage of a formalism based on distribution
functions over one based on density functions, is that the
former is completely general; it does not exclude a priori
the possibility of a discrete set of outcomes.

® From this point on, we shall work with distribution
functions to describe lotteries over monetary outcomes.

® \We take the lottery space L to be the set of all
distribution functions over nonnegative amounts of
money, or, more generally, over an interval [a, +00].
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PRELIMINARIES (CONT.)

® Assume a decision maker who has rational preferences >
defined over £. The application of the Expected Utility
form to outcomes defined by a continuous variable tells us
that under the assumptions of the framework, there is an
assignment of utility values u(z) to nonnegative amounts
of money with the property that any F'(-) can be
evaluated by a utility function U(-) of the form:

U(F)= /u(x)dF(m) (1)

e Expression (1) is the exact extension of the expected
utility form to the current setting.

® Recall that we distinguish between the vNM utility
function, U(+), defined on lotteries, and the Bernoulli
utility function, u(-), defined on sure amounts of money.
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RISK AVERSION

® From now onwards, it makes sense in the current
monetary context to postulate that u(-) is increasing and
continuous.

® We now concentrate on the important property of risk
aversion, its formulation in terms of the Bernoulli utility
function u(-), and its measurement.

DEFINITION 1. A decision maker is a risk averter (or
exhibits risk aversion) if for any lottery F(-), the
degenerate lottery that yields the amount [ dF(x) with
certainty is at least as good as the lottery F(-) itself. If
the decision maker is always (i.e. for any F'(-) ) indifferent
between these two lotteries, we say that he is risk neutral.
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RISK AVERSION (CONT.)

o |f preferences admit an expected utility representation
with Bernoulli utility function u(x), it follows directly
from the definition of risk aversion that the decision
maker is risk averse if and only if

/u(x)dF(a;) < u(/azdF(m)) for all F'(+). (2)

® Inequality (2) is called Jensen's Inequality, and it is the
defining property of a concave function.

® In the context of Expected Utility framework, we see that
risk aversion is equivalent to the concavity of u(-).
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RISK AVERSION (CONT.)

® Given a Bernoulli utility function, we have the following
definition.

DEFINITION 2. The certainty equivalent of F(-), denoted
¢(F,u), is the amount of money, which makes the
individual indifferent between the gamble F'(-) and the
certain amount ¢(F, u); that is,

u(c(F,u)) = /u(a:)dF(:v) (3)
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RISK AVERSION (CONT.)

PROPOSITION 1. Suppose a decision maker is an expected
utility maximizer with a Bernoulli utility function u(-) on
amounts of money. Then the following properties are
equivalent:

(i) The decision maker is risk averse;
(ii) u(-) is concave;

(i) ¢(F,u) < [adF(x) forall F(-).
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MEASUREMENT OF RISK AVERSION

DEFINITION 3. Given a (twice-differentiable) Bernoulli utility
function u(-) for money, the Arrow-Pratt coefficient of
absolute risk aversion at x is defined as
_u// (x)
. 4
® Thus, the degree of risk aversion is related to the
curvature of u(-) (i.e. u”(z)).

ra(z) =

® However, this is not an adequate measure because it is
not invariant to positive linear transformations of the
utility function at x.

® To make it invariant, the simplest modification is to use
" p
ZT(:))' We also change the sign to have a positive number

for an increasing and concave u(-).
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EXAMPLE

Consider the utility function u(x) = —e~** for a > 0. Then

u () = ae™® and u” (z) = —ae~*®. Therefore,
_(_A2,—ax
ra(x) = (ajfix) = « for all .
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MEASUREMENT OF RISK AVERSION (CONT.)

Once we are equipped with a measure of risk aversion, we can
put it to use in comparative statics exercises. Two common
situations are comparisons of risk attitudes across individuals
with different utility functions and the comparisons of risk
attitudes for one individual at different levels of wealth.
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MEASUREMENT OF RISK AVERSION (CONT.)

Given two Bernoulli utility functions u;(-) and us(-), when can
we say that us(-) is unambiguously more risk averse than
uy(+)? Several possible approaches to a definition seem
plausible.

(i) ra(x, u2) > ra(z,uy) for every .

(ii) There exists an increasing concave function t(-) such that
ug(z) = ¥ (uq(x)) at all x; that is, us(+) is a concave
transformation of u;(+) (uz(+) is “more concave” than wuy(+)).

(iii) c(F,uz) < ¢(F,uy) for any F(-).

These three definitions are equivalent.
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MEASUREMENT OF RISK AVERSION (CONT.)

® |t is common contention that wealthier people are willing
to bear more risk than poorer people. Although this might
be due to differences in utility functions across people, it
is more likely that the source of the difference lies in the
possibility that richer people can afford to take a chance.

DEFINITION 4. The Bernoulli utility function u(-) for money
exhibits decreasing absolute risk aversion if r4(x,u) is a
decreasing function of .

® Individuals whose preferences satisfy the decreasing
absolute risk aversion property take more risk as they
become wealthier.
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MEASUREMENT OF RISK AVERSION (CONT.)

® The assumption of decreasing absolute risk aversion yields
many other economically reasonable results concerning
risk-bearing behavior.

® However, in applications, it is often too weak and,
because of its analytical convenience, it is sometimes
complemented by a stronger assumption: nonincreasing
relative risk aversion.

® To understand the concept of relative risk aversion, note
that the concept of absolute risk aversion is suited to the
comparison of attitudes towards risky projects whose
outcomes are absolute gains or losses from current
wealth. But it is also of interest to evaluate risky projects
whose outcomes are percentage gains or losses of current
wealth.
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MEASUREMENT OF RISK AVERSION (CONT.)

DEFINITION 5. Given a Bernoulli utility function u(-), the
coefficient of relative risk aversion at x is

rp(x,u :M
R(7 ) u'(x) : (5)

® Consider now how this measure varies with wealth. The
property of nonincreasing relative risk aversion says that
the individual becomes less risk averse with regard to
gambles that are proportional to his wealth as his wealth
increases.

® This is a stronger assumption than decreasing absolute
risk aversion, since rg(z,u) = xra(x,u); a risk-averse
individual with decreasing relative risk aversion will exhibit
decreasing absolute risk aversion but the converse is not
necessarily true.
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COMPARISON OF PAYOFF DISTRIBUTIONS

® |n contrast to the previous contexts where we compared
utility functions, here, we will compare payoff
distributions.

® There are two natural ways that random outcomes can be
compared: according to the level of returns and according
to the dispersion of returns.

® We will therefore attempt to give meaning to two ideas:
that of a distribution F(+) yielding unambiguously higher
returns than G(-) and that of F'(-) being unambiguously
less risky than G(-).

® These notions are known, respectively, by the technical
terms of first-order stochastic dominance and
second-order stochastic dominance.
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FIRST-ORDER STOCHASTIC DOMINANCE

Note we restrict ourselves to distributions F'(-) such that
F(0) =0 and F(x) =1 for some x.

We want to attach meaning to the expression: “The
distribution F'(-) yields unambiguously higher returns
than the distribution G(-)."

At least two sensible criteria suggest themselves.

First, we could test whether every expected utility
maximizer who values more over less prefers F'(-) to G().

Alternatively, we could verify whether, for every amount
of money x, the probability of getting at least z is higher
under F'(-) than under G(-).

Fortunately, these two criteria lead to the same concept.

Christos A. loannou



FIRST-ORDER STOCHASTIC DOMINANCE
(CoNT.)

DEFINITION 6. The distribution F'(-) first-order stochastically
dominates G(-) if, for every nondecreasing function
u: R — R, we have

/ u(z)dF(z) > / u(z)dG(z). (6)
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FIRST-ORDER STOCHASTIC DOMINANCE
(CoNT.)

PROPOSITION 2. The distribution of monetary payoffs F'(-)

first-order stochastically dominates the distribution G(-) if and

only if Fi(z) < G(x) for every .

® Note that first-order stochastic dominance does not imply

that every possible return of the superior distribution is
larger than every possible return of the inferior
distribution (i.e. the set of possible outcomes could be
the same in the two distributions).

e Although F(-) first-order stochastically dominating G(-)
implies that the mean of = under F(-), [xdF(z), is
greater than its mean under G(-), a ranking of the means
of the two distributions does not imply that one
first-order stochastically dominates the other; rather, the

entire distribution matters.
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SECOND-ORDER STOCHASTIC DOMINANCE

® Next, we introduce a comparison based on relative
riskiness or dispersion. To avoid confusing this issue with
the trade-off between returns and risk, we will restrict
ourselves to comparing distributions with the same mean.

® Once again, a definition suggests itself: Given two
distributions F'(-) and G(-) with the same mean (i.e.
JxdF(z) = [ £dG(z)), we say that G(-) is riskier than
F(-) if every risk averter prefers F'(-) to G(-).

DEFINITION 7. For any two distributions F'(-) and G(-) with
the same mean, F'(-) second-order stochastically dominates
(or is less risky than) G(-) if, for every nondecreasing concave
function u : R, — R, we have

/ w(z)dF (x) > / u(z)dG(x). (7)
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MEAN-PRESERVING SPREADS

e Consider the following compound lottery.

® In the first stage, we have a lottery over x distributed
according to F'(-).

® |n the second stage, we randomize each possible outcome
x further so that final payoff is = + z, where z has a
distribution function H,(z) with a mean of zero (i.e.
[ zdH,(z) = 0).

® Thus, the mean of x + z is x. Let the resulting reduced
lottery be denoted by G(-).

® When lottery G(-) can be obtained from lottery F'(+) in
this manner for some distribution H,(-), we say that G(-)
is a mean-preserving spread of F'(-).
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EXAMPLE

F(-) is an even probability distribution between $2 and $3. In
the second step, we may spread the $2 outcome to an even
probability between $1 and $3, and the $3 outcome to an even
probability between $2 and $4. Then G(-) is the distribution
that assigns probability % to the four outcomes: 1, 2, 3, 4.
Thus, we say that G(-) is a mean-preserving spread of F'(-)
(and F(-) second-order stochastically dominates G(-) as
indicated next).
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SECOND-ORDER STOCHASTIC DOMINANCE
(CoNT.)

PROPOSITION 3. Consider two distributions F'(-) and G(-)
with the same mean. Then the following statements are

equivalent:

(i) F(-) second-order stochastically dominates G(-).

(ii) G(-) is a mean-preserving spread of F'(-).
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